2,505 research outputs found

    The cooperative functions of the EBNA3 Proteins are central to EBV persistence and latency

    No full text
    The Epstein–Barr nuclear antigen 3 (EBNA3) family of proteins, comprising EBNA3A, EBNA3B, and EBNA3C, play pivotal roles in the asymptomatic persistence and life-long latency of Epstein–Barr virus (EBV) in the worldwide human population. EBNA3-mediated transcriptional reprogramming of numerous host cell genes promotes in vitro B cell transformation and EBV persistence in vivo. Despite structural and sequence similarities, and evidence of substantial cooperative activity between the EBNA3 proteins, they perform quite different, often opposing functions. Both EBNA3A and EBNA3C are involved in the repression of important tumour suppressive pathways and are considered oncogenic. In contrast, EBNA3B exhibits tumour suppressive functions. This review focuses on how the EBNA3 proteins achieve the delicate balance required to support EBV persistence and latency, with emphasis on the contribution of the Allday laboratory to the field of EBNA3 biology

    A holistic review of the medical school admission process: examining correlates of academic underperformance

    Get PDF
    Background: Despite medical school admission committees’ best efforts, a handful of seemingly capable students invariably struggle during their first year of study. Yet, even as entrance criteria continue to broaden beyond cognitive qualifications, attention inevitably reverts back to such factors when seeking to understand these phenomena. Using a host of applicant, admission, and post-admission variables, the purpose of this inductive study, then, was to identify a constellation of student characteristics that, taken collectively, would be predictive of students at-risk of underperforming during the first year of medical school. In it, we hypothesize that a wider range of factors than previously recognized could conceivably play roles in understanding why students experience academic problems early in the medical educational continuum. Methods: The study sample consisted of the five most recent matriculant cohorts from a large, southeastern medical school (n=537). Independent variables reflected: 1) the personal demographics of applicants (e.g., age, gender); 2) academic criteria (e.g., undergraduate grade point averages [GPA], medical college admission test); 3) selection processes (e.g., entrance track, interview scores, committee votes); and 4) other indicators of personality and professionalism (e.g., Mayer-Salovey-Caruso Emotional Intelligence Test™ emotional intelligence scores, NEO PI-R™ personality profiles, and appearances before the Professional Code Committee [PCC]). The dependent variable, first-year underperformance, was defined as ANY action (repeat, conditionally advance, or dismiss) by the college's Student Progress and Promotions Committee (SPPC) in response to predefined academic criteria. This study protocol was approved by the local medical institutional review board (IRB). Results: Of the 537 students comprising the study sample, 61 (11.4%) met the specified criterion for academic underperformance. Significantly increased academic risks were identified among students who 1) had lower mean undergraduate science GPAs (OR=0.24, p=0.001); 2) entered medical school via an accelerated BS/MD track (OR=16.15, p=0.002); 3) were 31 years of age or older (OR=14.76, p=0.005); and 4) were non-unanimous admission committee admits (OR=0.53, p=0.042). Two dimensions of the NEO PI-R™ personality inventory, openness (+) and conscientiousness (−), were modestly but significantly correlated with academic underperformance. Only for the latter, however, were mean scores found to differ significantly between academic performers and underperformers. Finally, appearing before the college's PCC (OR=4.21, p=0.056) fell just short of statistical significance. Conclusions: Our review of various correlates across the matriculation process highlights the heterogeneity of factors underlying students’ underperformance during the first year of medical school and challenges medical educators to understand the complexity of predicting who, among admitted matriculants, may be at future academic risk

    Social support and sense of loneliness in solitary older adults

    Get PDF
    Older people are vulnerable to loneliness and isolation. Solitary seniors are more likely to suffer the feelings of loneliness with inadequate social networks. Based on a face-to-face questionnaire survey with 151 community-dwelling solitary seniors, the present study examined the associations between social support and the sense of loneliness among solitary older adults in Hong Kong. The results showed that poor mental health status, financial inadequacy and weak social support networks were significantly associated with the sense of loneliness of solitary older adults, with social support being the most prominent risk factor. Frequent contacts with siblings, relatives or friends were found to be important sources of social support to combat loneliness. Policy and service implications are discussed

    Electronic transport in polycrystalline graphene

    Full text link
    Most materials in available macroscopic quantities are polycrystalline. Graphene, a recently discovered two-dimensional form of carbon with strong potential for replacing silicon in future electronics, is no exception. There is growing evidence of the polycrystalline nature of graphene samples obtained using various techniques. Grain boundaries, intrinsic topological defects of polycrystalline materials, are expected to dramatically alter the electronic transport in graphene. Here, we develop a theory of charge carrier transmission through grain boundaries composed of a periodic array of dislocations in graphene based on the momentum conservation principle. Depending on the grain boundary structure we find two distinct transport behaviours - either high transparency, or perfect reflection of charge carriers over remarkably large energy ranges. First-principles quantum transport calculations are used to verify and further investigate this striking behaviour. Our study sheds light on the transport properties of large-area graphene samples. Furthermore, purposeful engineering of periodic grain boundaries with tunable transport gaps would allow for controlling charge currents without the need of introducing bulk band gaps in otherwise semimetallic graphene. The proposed approach can be regarded as a means towards building practical graphene electronics.Comment: accepted in Nature Material

    Factors contributing to delay in parasite clearance in uncomplicated falciparum malaria in children

    Get PDF
    Background: Drug resistance in Plasmodium falciparum is common in many endemic and other settings but there is no clear recommendation on when to change therapy when there is delay in parasite clearance after initiation of therapy in African children. Methods: The factors contributing to delay in parasite clearance, defined as a clearance time > 2 d, in falciparum malaria were characterized in 2,752 prospectively studied children treated with anti-malarial drugs between 1996 and 2008. Results: 1,237 of 2,752 children (45%) had delay in parasite clearance. Overall 211 children (17%) with delay in clearance subsequently failed therapy and they constituted 72% of those who had drug failure, i.e., 211 of 291 children. The following were independent risk factors for delay in parasite clearance at enrolment: age less than or equal to 2 years (Adjusted odds ratio [AOR] = 2.13, 95% confidence interval [CI]1.44-3.15, P < 0.0001), presence of fever (AOR = 1.33, 95% CI = 1.04-1.69, P = 0.019), parasitaemia >50,000/ul (AOR = 2.21, 95% CI = 1.77-2.75, P < 0.0001), and enrolment before year 2000 (AOR= 1.55, 95% CI = 1.22-1.96, P < 0.0001). Following treatment, a body temperature ≥ 38°C and parasitaemia > 20000/μl a day after treatment began, were independent risk factors for delay in clearance. Non-artemisinin monotherapies were associated with delay in clearance and treatment failures, and in those treated with chloroquine or amodiaquine, with pfmdr 1/pfcrt mutants. Delay in clearance significantly increased gametocyte carriage (P < 0.0001). Conclusion: Delay in parasite clearance is multifactorial, is related to drug resistance and treatment failure in uncomplicated malaria and has implications for malaria control efforts in sub-Saharan Africa

    Adaptive Lévy processes and area-restricted search in human foraging

    Get PDF
    A considerable amount of research has claimed that animals’ foraging behaviors display movement lengths with power-law distributed tails, characteristic of Lévy flights and Lévy walks. Though these claims have recently come into question, the proposal that many animals forage using Lévy processes nonetheless remains. A Lévy process does not consider when or where resources are encountered, and samples movement lengths independently of past experience. However, Lévy processes too have come into question based on the observation that in patchy resource environments resource-sensitive foraging strategies, like area-restricted search, perform better than Lévy flights yet can still generate heavy-tailed distributions of movement lengths. To investigate these questions further, we tracked humans as they searched for hidden resources in an open-field virtual environment, with either patchy or dispersed resource distributions. Supporting previous research, for both conditions logarithmic binning methods were consistent with Lévy flights and rank-frequency methods–comparing alternative distributions using maximum likelihood methods–showed the strongest support for bounded power-law distributions (truncated Lévy flights). However, goodness-of-fit tests found that even bounded power-law distributions only accurately characterized movement behavior for 4 (out of 32) participants. Moreover, paths in the patchy environment (but not the dispersed environment) showed a transition to intensive search following resource encounters, characteristic of area-restricted search. Transferring paths between environments revealed that paths generated in the patchy environment were adapted to that environment. Our results suggest that though power-law distributions do not accurately reflect human search, Lévy processes may still describe movement in dispersed environments, but not in patchy environments–where search was area-restricted. Furthermore, our results indicate that search strategies cannot be inferred without knowing how organisms respond to resources–as both patched and dispersed conditions led to similar Lévy-like movement distributions

    BCAA catabolism in brown fat controls energy homeostasis through SLC25A44.

    Get PDF
    Branched-chain amino acid (BCAA; valine, leucine and isoleucine) supplementation is often beneficial to energy expenditure; however, increased circulating&nbsp;levels of BCAA are linked to obesity and diabetes. The mechanisms of this paradox remain unclear. Here we report that, on cold exposure, brown adipose tissue (BAT) actively utilizes BCAA in the mitochondria for thermogenesis and promotes systemic BCAA clearance in mice and humans. In turn, a BAT-specific defect in BCAA catabolism attenuates systemic BCAA clearance, BAT fuel oxidation and thermogenesis, leading to diet-induced obesity and glucose intolerance. Mechanistically, active BCAA catabolism in BAT is mediated by SLC25A44, which transports BCAAs into mitochondria. Our results suggest that BAT serves as a key metabolic filter that controls BCAA clearance via SLC25A44, thereby contributing to the improvement of metabolic health

    DHODH modulates transcriptional elongation in the neural crest and melanoma

    Get PDF
    Melanoma is a tumour of transformed melanocytes, which are originally derived from the embryonic neural crest. It is unknown to what extent the programs that regulate neural crest development interact with mutations in the BRAF oncogene, which is the most commonly mutated gene in human melanoma1. We have used zebrafish embryos to identify the initiating transcriptional events that occur on activation of human BRAF(V600E) (which encodes an amino acid substitution mutant of BRAF) in the neural crest lineage. Zebrafish embryos that are transgenic for mitfa:BRAF(V600E) and lack p53 (also known as tp53) have a gene signature that is enriched for markers of multipotent neural crest cells, and neural crest progenitors from these embryos fail to terminally differentiate. To determine whether these early transcriptional events are important for melanoma pathogenesis, we performed a chemical genetic screen to identify small-molecule suppressors of the neural crest lineage, which were then tested for their effects on melanoma. One class of compound, inhibitors of dihydroorotate dehydrogenase (DHODH), for example leflunomide, led to an almost complete abrogation of neural crest development in zebrafish and to a reduction in the self-renewal of mammalian neural crest stem cells. Leflunomide exerts these effects by inhibiting the transcriptional elongation of genes that are required for neural crest development and melanoma growth. When used alone or in combination with a specific inhibitor of the BRAF(V600E) oncogene, DHODH inhibition led to a marked decrease in melanoma growth both in vitro and in mouse xenograft studies. Taken together, these studies highlight developmental pathways in neural crest cells that have a direct bearing on melanoma formation

    A Small Conductance Calcium-Activated K<sup>+</sup> Channel in C. elegans, KCNL-2, Plays a Role in the Regulation of the Rate of Egg-Laying

    Get PDF
    In the nervous system of mice, small conductance calcium-activated potassium (SK) channels function to regulate neuronal excitability through the generation of a component of the medium afterhyperpolarization that follows action potentials. In humans, irregular action potential firing frequency underlies diseases such as ataxia, epilepsy, schizophrenia and Parkinson's disease. Due to the complexity of studying protein function in the mammalian nervous system, we sought to characterize an SK channel homologue, KCNL-2, in C. elegans, a genetically tractable system in which the lineage of individual neurons was mapped from their early developmental stages. Sequence analysis of the KCNL-2 protein reveals that the six transmembrane domains, the potassium-selective pore and the calmodulin binding domain are highly conserved with the mammalian homologues. We used widefield and confocal fluorescent imaging to show that a fusion construct of KCNL-2 with GFP in transgenic lines is expressed in the nervous system of C. elegans. We also show that a KCNL-2 null strain, kcnl-2(tm1885), demonstrates a mild egg-laying defective phenotype, a phenotype that is rescued in a KCNL-2-dependent manner. Conversely, we show that transgenic lines that overexpress KCNL-2 demonstrate a hyperactive egg-laying phenotype. In this study, we show that the vulva of transgenic hermaphrodites is highly innervated by neuronal processes and by the VC4 and VC5 neurons that express GFP-tagged KCNL-2. We propose that KCNL-2 functions in the nervous system of C. elegans to regulate the rate of egg-laying. © 2013 Chotoo et al

    LGMD2I in a North American population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a marked variation in clinical phenotypes that have been associated with mutations in <it>FKRP</it>, ranging from severe congenital muscular dystrophies to limb-girdle muscular dystrophy type 2I (LGMD2I).</p> <p>Methods</p> <p>We screened the <it>FKRP </it>gene in two cohorts totaling 87 patients with the LGMD phenotype.</p> <p>Results</p> <p>The c.826C>A, p.L276I mutation was present in six patients and a compound heterozygote mutation in a seventh patient. Six patients had a mild LGMD2I phenotype, which resembles that of Becker muscular dystrophy. The other patient had onset before the age of 3 years, and thus may follow a more severe course.</p> <p>Conclusion</p> <p>These findings suggest that LGMD2I may be common in certain North American populations. This diagnosis should be considered early in the evaluation of LGMD.</p
    corecore